Ventilation
and the House
as a system

Indoor air that is clean, fresh and healthy
V is for Ventilation

A system or means of providing fresh air.

Webster New Collegiate Dictionary
House as a System

The way houses work - heat, air and moisture move in and out according to some simple rules. When you build things right, it really works, when it doesn’t, you quickly become a case study.

Tex McLeod
Some Common Truths

- The housing industry is slumping
- Energy is expensive
- Boomers are getting older
- So am I, in fact................. we resemble that remark
Insanity
Continuing to do things the same, and expecting a different outcome
US buildings consume roughly 10% of the world’s energy, every day!
The Better Built House

Everything you need to know but were.....
- Moisture control
- HVAC: heating, cooling, ventilation, filtration
- Combustion and garage isolation
- Commissioning the building
- Radon control
- Pest barriers
- Healthy building materials
Market Changes

Envelope
- Bigger houses
- Smaller lots
- More and bigger windows
- Tighter envelopes
- More insulation
- More complex roofs

Mechanicals
- High Efficiency HVAC
- More air conditioning
- More plumbing
- More exhaust fans
- More choices - fuels, technologies
- More appliances & lighting
“We face a choice that is starkly simple, we must change or be changed. If we fail to change for the better, we will be changed for the worse”

Wendell Berry, philosopher
Houses will

be better insulated
be tighter
will need better
ventilation
be low maintenance and
aging friendly
House as a system

Heat, air and moisture flows
HEAT Flows

HOT → COLD

a) Conduction
b) Convection
c) Radiation
Air Flows

To have air flow, you need: a pressure difference and a hole.

Pressure in houses is caused by:
- Wind Effect
- Stack Effect
- Flue or mechanical Effect
Uncontrolled air leakage exfiltrating moisture into an insulated wall or roof cavity creates rot & decay.
Understanding Moisture
Moisture can be: liquid, vapor or solid

Liquid flow (gravity)
- Rain, leaks, bulk water

Capillary (rising damp)
- Material wicking

Air transport
- Air flows carrying moisture laden air

Diffusion
- Vapor pressure drive

These are in order of priority
HVAC contractor’s Opportunity

- Help builders make better choices
- Install equipment that protects and improves IAQ / energy efficiency
- Reduce warranty calls / liabilities
- Understand and incorporate the House is a System into your designs
- Get engaged earlier
- Benefit from “brand” recognition, ie the ENERGY STAR IAQ Package
Size matters

- Size using Manual J
- Get detailed building info from builders on:
 - Air tightness – 30-50% of heating loads
 - Window factors – 30-50% of AC loads
- Match outdoor and indoor cooling coils
- In humid climates, add additional dehumidification
- Ducts need to be properly sized and sealed
Sizing Impacts IAQ

Cooling

- Over sizing leads to short cycling
 - Short cycling reduces effectiveness of
 - dehumidification
 - filtration
 - Over sizing causes pressure differences

Heating

- Over sizing can result in
 - Comfort problems
 - Condensation
 - Pressure differences, poor combustion venting
Ducting Impacts IAQ

- Construction dust and debris
- Supply air leakage can loose conditioned air into hidden cavities
- Return air leakage can draw pollutants into the ductwork
 – especially when ducts are in the garage or attic
Distribution Systems

- Keep ducts in conditioned spaces
- Work with builder to optimize framing to accommodate ducts
- Provide pressure relief, transfer grills
- Seal ducts for better performance
 - leaky ducts can lose up to 30%
Ducts in Conditioned Space
Return ducts in framing are difficult to seal and may cause IAQ problems
Filtration

Filtration is one of 4 IAQ strategies - Remove, Seal, Ventilate, Filter

- Commonly located in the return duct of the air handler
- It works and is cost effective
- Choose a filter with a rating of MERV 8 or better
- Caution – the better the filter, the more it restricts air flow, the more it needs changing / cleaning
Penetrations

- There are more penetrations
- Side wall vented combustion appliances
- Dryer, bath and kitchen fans,
- Plumbing, electrical & security
- More and bigger windows
- Decks
Proper Detailing of Penetrations
Combustion Safety

Rule 1 – don’t kill your customer!

- Sealed combustion equipment
- Power vented water heater
- Direct vent fireplaces – no unvented fireplaces
- Vented gas cooking appliances
- Separating the house from the garage
- Install CO Detectors
Direct vent appliances

- Fan-assisted exhaust
- Induced draft fan
- Power vented gas water heater
- Sealed combustion unit
- High efficiency gas furnace
- Inside
- Outside
- Combustion air
Direct Vent Appliances

- Sealed combustion chamber
- Decouples appliance from house
- You also get high efficiency
- Move to ECM motors
Water heater safety: the good, the bad, and the really ugly
The Garage to house Connection
1. Air seal between the garage and the house
2. Weather-strip connecting doors, automatic door closers
3. Install a 100 CFM exhaust that comes on automatically when the garage door closes.
CO detectors

- CO is a product of incomplete combustion
- In all homes with combustion appliances or attached garage
- At a minimum, a certified alarm should be placed outside the sleeping area(s)
- CO is colorless and odorless and it kills
- It doesn’t fall, it doesn’t rise – it just mixes into the air we breath
Depressurization Testing

- Primarily needed if installing natural draft appliances like wood fireplaces
- Measure pressure between outside and inside with exhaust fans running
- If pressure is greater than 5 Pa (0.02" w.g.) provide make-up air
Indoor Air Quality...

Understanding sources and solutions
Fact:

Indoor air has 2-5 times more chemical pollutants than outdoor air

EPA
Fact:

1 in 3 people have an allergy severe enough to seek medical attention

American Lung Association
IAQ – what we know

- Childhood asthma is increasing at an alarming rate
- Dampness and molds increase respiratory problems and affect the immune system
- The Surgeon General estimates more than 21,000 lung cancer deaths per year due to radon.
The Nature of IAQ & Health

Everyone is affected, some more than others

- Age – the very young and the elderly
- General health – the immune system
- Duration of exposure
- Level of pollutant concentration
Indoor air is affected by:

- Outdoor air
- Building materials
- Mechanical equipment
- The foundation (moisture, soil gases)
- Lifestyle - how people live; hobbies, pets, cleaning, home furnishings and personal care products
Pollutant Sources

External
- Outdoor air
- Attached garages
- Soil gases (radon)
- Exterior applied insecticides

Internal
- Building materials
- Combustion equipment
- Occupant Activities
 - cooking
 - cleaning
 - hobbies
- Furnishings
- Mold & other biologicals
Moisture = Mold

Find the moisture, find the MOLD
Spores (seeds) are everywhere..........

Factors that affect the germination and growth of molds are:

- nutrients
- presence of oxygen
- temperature
- water
Molds

- Spores (seeds)
- Plant materials (Beta-1,3 glucans)
- Mycotoxins
- Smells (fungal volatiles)
Strategies to Control Moisture

- Manage interior humidity levels
 - Install and operate ventilation system
 - Exhaust from kitchen and baths
 - Vent dryers

- Warm surface temperatures
 - Increase insulation
 - Avoid thermal bridges
 - Wash air over outside walls
 - Use low e, warm edge windows

- No leaks
IAQ Strategies

1. Eliminate
2. Seal
3. Ventilate
4. Filter
Ventilation...

Methods, amounts & strategies
Why Ventilate?

- To control humidity
- To control pollutants
 - People - respiration (primarily CO₂), perspiration, cooking, hobbies, parties, pets, cleaners
 - Buildings – materials, furnishing, combustion gases, radon, water vapor
- Outdoor air is always better than indoor air
Benjamin Franklin

“I am certain that no air is so unwholesome as air in a closed room that has been often breathed and not changed.”
Goals of Mechanical Ventilation

Stale air out, fresh air in
- To control moisture
- To reduce pollutants levels
- To filter incoming air

- Ventilate for people (continuous)
- Capacity for supplementary ventilation when needed (intermittent)

- Distributed, quiet, comfortable, controlled
How Much Ventilation?

- **ASHRAE: Standard 62-2**
 - So much per person (bedrooms)
 - Additional ventilation based on Floor Area

- **Other factors:**
 - Moisture generation rates,
 - Source strength of pollutant,
 - Occupant sensitivity
Whole house ventilation

- Every home needs the capacity for mechanical ventilation to manage moisture and dilute pollutants
 - over and above air leakage and opening windows
 - There are exceptions are for warmer climates where windows are expected to be open for extended periods

- 7.5 cfm per bedroom +1 extra + 1 cfm / 100ft²

- More people - more capacity
Ventilation Sizing

The minimum ventilation needed to control moisture, odors and other pollutants

Ventilation Capacity

4 bedrooms + 1 x 7.5 cfm + 26.4 cfm = 63.9 CFM
Types of Mechanical Ventilation

- Balanced System
- Exhaust-Only
- Supply-Only
“Traditional heating and cooling systems have not addressed the fresh air ventilation needs of home occupants.

Homes experience inadequate ventilation because they rely on infiltration and natural ventilation rather than controlled mechanical ventilation systems.”

Program Needs for Indoor Environments Research (PNIER)
US EPA Planning Document
New California study

- 1/3 of the houses didn’t open windows in winter
- 75% of houses without mechanical ventilation (80 – 20) had air change rates below code
- All the homes exceeded formaldehyde guidelines

We conclude that new single-family detached homes in Calif. are built relatively tight, and in those homes where the windows/doors are not opened the outdoor air exchange rates are low and concentrations of formaldehyde can be substantial.

Window usage, ventilation, and formaldehyde concentrations in new Calif. homes
These results suggest that consideration should be given to installing mechanical ventilation systems in new single-family residences to provide a dependable and continuous supply of outdoor air so that indoor sources of formaldehyde are reduced.

The HRV systems performed well in increasing the home air exchange rates and reducing indoor formaldehyde while the DOA systems did not perform well as a result of the low outdoor air flow rates and low fan operation times associated with these systems.
Keep in mind, builders want ventilation solutions

Solutions that work in the home, not in the box - installed.
Balanced Ventilation
Balanced Ventilation

- HRVs / ERVs can be independently ducted or integrated into forced air system
- Choose systems that are rated by the Home Ventilating Institute
- Select units with the right air flow suitable for your climate zone.

Graphics Courtesy of Building Science Corp.
HRV / ERV

the LUNGS of the Home

Recover as much as 70% - 80% of the energy from the exhaust air stream
Ducted Exhaust –
fresh air distributed by forced-air system
Fully ducted system
Balance airflows within +/-10% for proper operation
Venmar Enerflo
Integrated space, DHW and ventilation systems ...
Exhaust Ventilation
Exhaust Ventilation

- Exhaust at source
- Use quiet, efficient, "tested" fans
- New controls
- Houses are tighter, be cautious about back-drafting
Minimum bathroom fan specifications

Choose fans that are:

- HVI rated, not less than 50cfm
- Have a sound rating not greater than 3.0 sones
- If intended for continuous use, a sound rating of 1.0 sone is required
Properly sized fan and duct (5” dia.)

Insulated duct, air tight details
Exhaust Only Ventilation

Central Exhaust Fan

- A central fan can reduce noise levels and encourage extended operation times
- Locate the fan in unoccupied areas, accessible for maintenance
- HRV / ERV ready

Graphics Courtesy of Building Science Corp.
Central Exhaust Fan
Specify fans that are under 1.0 sones to ensure people will leave them running
Supply Ventilation
Supply Only Ventilation

- A 6” fresh air into the air handler return
- Uses dampers and controls to regulate ventilation (independent of heating & cooling)
- Use ECM motors
- Recognize supply only ventilation will tend to pressurize homes – this is good in cooling zones, bad in heating

Graphics Courtesy of Building Science Corp.
Fresh air distribution is essential for good IAQ with all systems!
the debate continues...

More customers vs more business

- More customers?
- More product to existing customers?

Why not let ventilation help you do more business with your existing customers
Changing the Course of Housing
The opportunity

- America needs healthy, energy efficient houses
- Healthy homes need good ventilation
- You’re in a great industry, with great products
- You are well placed to take advantage of the opportunities
- There is good work to be done – good money to be made
- Go get it!
Put the V back in HVAC
Thank You!

tex@bellnet.ca